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A Small Dual-Frequency Transformer
INn Two Sections

Cesar Monzon, Senior Member, |EEE

Abstract—One of the most useful transmission-line constructs
isthe quarter-wave transformer that is used to impedance match
a line at a single frequency fo. The feasibility of an electrically
small transformer with two sectionsand capable of achievingideal
impedance matching at two arbitrary frequenciesis demonstrated
analytically. Toachievethis, theexact solution totheresulting tran-
scendental transmission-line equationsfor two sectionsis obtained
with no restrictions. The parameters of the transformer are pre-
sented in explicit closed form, and are exact. The results of this
study are useful for a number of practical design problems, in-
cluding dual-band antennas and RF circuitsin general. In partic-
ular, feasibility of ideal operation at the important first harmonic
frequency 2 f, is demonstrated.

Index Terms—Dual frequency,
transformer, transmission lines.

impedance  matching,

|I. INTRODUCTION

UARTER-WAVE transformers are ubiquitous in engi-
Q neering and physics. Known also as quarter-wave plates

and quarter-wave sections, they are the most popular
kind of impedance transformers. Impedance transformers en-
compass lumped networks, tapered sections, shorting plungers,
and double-stub matching [1], as well as a lesser known class,
the so-called transmission-line transformer (TLT) composed
of transmission lines with twisted connections [2]. Impedance
transformers have traditionally been broadly divided into
two groups; those with a continuously tapered impedance
distribution and those with a stepped piece-wise impedance
distribution. The latter being considerably shorter than the
broad-band tapered transformers perhaps because they tend to
mimic atraditional lumped-element design.

In a very recent publication [3], a new line impedance
transformer has been presented. Chow and Wan introduce a
dual-band two-section 1/3-wavelength transformer length that
operates at the fundamental frequency f; and its first harmonic
2f1. Such anovel transformer is of great interest because of the
current trend toward compact, smaller, and more efficient RF
front ends, and exploitation of frequency reuse in commercial
and military systems.

The transformer of Chow and Wan was designed by nu-
merical solution of the transcendental equations obtained by
enforcing operation at f; and 2f; (four equations in four
unknowns, line and impedance for each line section, al real
quantities). In addition, a design equation was presented
(I3, eq. (2)]), which, although not analytically exact, was
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Fig. 1. Two-section dual-band transformer.

numerically nearly exact. It was further stated in [3] that the
analytical software Mathematica! was used to prove that the
two-section transformer was not exact, but for engineering
applications “effectively exact” for impedance transform ratios
K not sufficiently high (K up to 6 or 15 depending on the
tolerance on the resulting reflection coefficient levels). Chow
and Wan further rationalize that the inexact nature of the dual-
band two-section transformer was the reason why it was not
discovered before from an exact transmission-line analysis.

Here, we present an extension of the two-section transformer
analysis of [3] to any two arbitrary frequencies f; and f,
and obtain an exact analytical solution to the resulting tran-
scendental equations, leading to practical design equations,
which are validated numerically. Analytically and numericaly,
we demonstrate that the two-section transformer provides a
true exact solution to the dual-frequency problem, under all
frequency and loading conditions. The present solution, when
applied to the case of fundamental plus first harmonic (f; and
f2 = 2f1), resultsin an improvement on the analysis of [3], as
our solution is analytically and numerically demonstrated to be
valid under all impedance transform ratios.

Il. ANALYSIS

The input impedance Z;,, of the two-section line shown in
Fig. 1isgiven by

Zh + 571 tan(B4;)
Zin =Z L l
Y71+ JZ7 tan(Bly) ?
Ry, + 75 tan(f4s)
!
o= g+ R (ot X

We want the input impedance to be equal to 7, at the two fre-
quencies of interest f; and f». Equating Z;,, to Z, and solving
for Z; from (1) leads to

Z() — jZl tan(/%l)

Z =7 .
L g i Zy tan(Bey) &
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Thisis equivalent to looking toward the left-hand side from the
central transition plane. From (2) and (3), we eliminate leading
to the following two identities:

(ZIRy — Z3Zy) tan(Bty) tan(Bls) =Z1 Za(Ry, — Zo)  (4)
Zy (Z3 — RpZo) van(Bls) =Z> (RpZo — Z7)

x tan(ffy). (5)

These have been obtained by separating the real and imaginary

components and assuming all parameters are real.
Equations (4) and (5) can be rewritten as follows:

__ ZnZ(Ry — Zo)
tan(f41) tan(fls) =o = (Z2R; - Z370) (6)
tan(/%l) o Zl(Z22 — RLZO) (7)

tan(Bla) | Zs(RyZo— Z2)

which define the parameters «« and .
From (6) and (7), we obtain the following identities:
(tan(B41))* =ary ®
(tan(32))? ==, 9)
Y

Equations (8) and (9), when applied to frequencies f; and f5,
result in the following four transcendental equations:

(tan(B141))? =ay (108)
(tan(B241))” =ay (10b)
(tan(B1£2))? :% (10¢)
(tan(Bats))? :%. (10d)
From (10a) and (10b), we obtain
tan(ﬁQEl) = :I:tan(ﬁlﬁl). (11)
Whose solution is given by
Boly F By =nmw (12)

for n an arbitrary integer. Similarly, from (10c) and (10d), we
obtain

Pals F Prlas = mm (13)

for m another arbitrary integer.

Sincewe areinterested in asmall transformer, we should pick
the (+) signin (12) and (13), together with m = n = 1 (here,
we assume f» > f1), and we obtain as solution to the above
transcendental equations as follows:

by =4y

_ aw
B+ B
With thelinelengthsknown, «- and -y can be determined through

application of (6) and (7) at either f; or f». For instance, using
/1, and simplifying through the use of (14), we obtain

(148
(14b)

Lo

o :(tan(ﬁlﬁl))Q
v =1.

(15)
(16)
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Using~y = 1in(7) resultsin

ZoRr, = Z17» 17

whichisessentially the so-called antimetry condition [8]. Equa-
tion (17) isvalid provided (Z; + Z»2) # 0. Similarly, after using
(17) in (6), it becomes

ZoRL(Ry, — Zy)

ZiRy, — 232y =

(18)

By using (17) in (18), a fourth-order equation for either Z; or
Z> results. It is, however, a simple algebraic equation of the
second order on the square of either Z; or Z,. Solving for Z; by
standard means, the only solution leading to real lineimpedance
valuesis given by

Zy Zy g 3
Zy = | 5 (Rp — Zo) + %(RL_ZO) + Zg Ry,

20
19
and Z, can be obtained from (17) as
_ ZoRyp
Zy = 7 (20)

This completes the derivation of the design equations for the
two-section transformer.

I1l. NATURE OF THE SOLUTION

The solution, as presented through (14), (19), and (20), isel-
ementary in nature, explicit, and in closed form; however, it is
instructive to consider a few fine points.

A. Total Length of Transformer

This can be obtained from (14). The total length in wave-
lengths (inthe material) cal cul ated at the fundamental frequency
f1 isgiven by

L+t B
At Ba+ P

In view of the fact that we assumed f> > fi, it is seen that the
total length will, ingeneral, be smaller than one-half wavelength
at the low-frequency end. This extreme is observed when f, =
f1, i.e., when we have a double pole. Since the equations do
not smoothly consider this scenario, and some specia limiting
action needs to be taken, thisis done elsewhere in this paper.

On the other hand, the equations indicate that the total length
can be extremely small, and this can happen if f> > f1,i.e,
when a simple pole is encountered. This special case is treated
separately elsewhere.

(21)

B. Single-Pole Limit
For f> > f1, thetotal length is exceedingly small, and (15)
becomes

am (). (22)
Further, this implies that from (19) and (20)

\/ Zo|Rp — Z,
7 %M (23)
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Zy

ZQ %[31£1RL m

(24)

Since, on the other hand [5], the wave impedance Z and wave
velocity “o” are related to the distributed (per unit length) in-
ductance L and capacitance C of agiven line, we have

P /L 1

fd — V= ——.
C vLC

Since the velocity is the ratio from angular frequency w to

wavenumber 3, we evaluate this at f1, replace in (25), and
solve (25) for C and L. We obtain

(25)

:Z_ﬁl C 2!

L = —
Wi Zwl

(26)
For exceedingly small lengths, (23) and (24) indicate that Z; is
very large, while Z5 isvery small. Equation (25) meansthat Z;
is eminently inductive, while Z, is eminently capacitive. It is
thus permissible to replace thefirst section with aserieslumped
inductance equal to L/; (here, Z in (26) is Z), and the second
section with a shunt lumped capacitance given by C¢; (here, Z
in (26) is Z,). After some rearrangement, we find

Zo|Rr — Z,
1ty _V %o\ R~ ]

Wi

(279)

1 | Ry, — Zo|
Cty = .
T wiR;, Zy

(27b)

The above combination of a lumped (series) inductance and
(shunt) capacitance is actually a known transforming network
using lumped reactive elements [6], and it is known as a
ladder-type half-section. This validates the extension of the
solution to the limiting case, and illustrates its roots.

Thus, the single-pole limit of our two-section transformer
is an extension of a lumped impedance-transforming network.
Thisis a fundamental difference between the present solution
and that afforded by a quarter-wave transformer.

C. Double-Pole Limit

Sinceaccording to (21), when f» = f1, each section becomes
one-quarter wavelength, we are interested in elucidating the na-
ture of this specia case. From (15), we seethat &« — oo and, in
this limit, (19) and (20) reduce to

7y =73 Ry/*
Zy =R 75,

(28a)
(28h)

These equations are, however, popular equations for the design
of two quarter-wave transformersin series[4], [7]. It isthus ob-
served that the limits of the present solution are well-known de-
signs of quite different nature, while the present design bridges
the gap between them, and extends them considerably, since the
limiting cases are single-frequency designs.
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Fig. 2. Comparison of |S11| for typical quarter-wavelength versus two-pole
(K = 4) response.

D. Symmetry Properties
The dimensionless impedance transform ratio parameter K
is defined as [3]

K=—.
Iy

(29)

With this, (19) becomes

}f—;zdgu_mﬂ/[%u—m} LK (30

and it can be shown by purely algebraic manipulations using
(20) and (30) that the solution for K is related to the solution
for 1/K via

A 7

it _Z2 (31a)
Ry K=K, Zo K=1/K,

Z. Z

=2 -2 (31b)
Ry K=K, Zo K=1/K,

IV. CALCULATIONS

A few calculations have been made via direct computation
of (14), (19), (20), and standard transmission line (1) and (2)
to define the return loss .51 1 with respect to the line impedance
Zy. The first example corresponds to a comparison of the per-
formances of a typical quarter-wavelength transformer versus
two-pol e responses. One of the four two-pole cases considered
in the return-loss calculation of Fig. 2 is the double-pole case,
which was shown analytically to beidentical to the standard two
quarter-wavelength section design. We have used a central fre-
quency of 15 GHz, RL = 50 £, and Zp = 200 Q (K = 4). The
freguencies of the two-pole cases were selected around 15 GHz
to illustrate the broad-bandwidth characteristics of the design.
Table | shows the design parameters employed in this calcula-
tion.

Our next example illustrates the return loss as a function of
f2 for fixed f1 = 10 GHz. For f» in the range of 14-22 GHz,
K = 2and6, thereturnlossispresentedin Figs. 3and 4, respec-
tively. The data showsthat the design can behave like an accept-
able bandpass filter/transformer for reasonably low impedance
transform ratios K, becoming margina for X = 6 for designs
that address the fundamental and first harmonic.
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TABLE |
DESIGN PARAMETERS FOR QUARTER-WAVELENGTH VERSUS TWO-POLE
STuDY. THE CENTER FREQUENCY WAS CHOSEN AT 15 GHz FOR Zy = 200 €2
AND Ry = 50 Q. HERE, L DENOTES THE TOTAL LENGTH

A4 |Double Pole| 2-pole case # 1| 2-pole case # 2| 2-pole case # 3
1 15 15 13 12 10
f2 N/A 15 17 18 20
Z0 200 200 200 200 200
Z1 N/A 141 139 136 125
Z2 100 70.7 71.9 73.6 80
RL 50 50 50 50 50
K 4 4 4 4 4
L/x | 025 0.5 13/30 0.4 1/3
0

f1=10, £2=18, K=2
11=10. 12=16, K=2
f1=10,12=14,K=2

f1=10. f2=22, K=2
11=10.12=20, K=2

Retum loss. dB

T

5 7 9 11 13 15 17 19 21 23 25
Frequency, GHz

Fig. 3. Return-loss characteristics as a function of f. for fixed f; = 10 and
K = 2.

11=10, 12=18. K=6
11=10.12=16, K=6
f1=10. 12=14, K=6

11=10. f2=20, K=6

-30 4

Retum loss, dB

=10

-40 4

-50 + T T
13 15 17 19 21 23 25
Frequency. GHz

Fig. 4. Return-loss characteristics as a function of f. for fixed f; = 10 and
K = 6.

Thenext case correspondsto the fundamental and itsfirst har-
monic. We chose f; = 10 GHz and f> = 20 GHz to illustrate
the fact that the present solution with two sectionsis exact. Re-
turn-lossdataasafunction of thefrequency ispresentedinFig. 5
for valuesof K ranging from 2to 20. The quality of the solution
is evident from this figure.

Another case we consider hereisthe validation of the proper-
ties (31) corresponding to K and itsinverse 1/ K. The frequen-
cies chosen are f; = 10 GHz and f; = 20 GHz for K = 2,
4, and 20 and their inverses. Table |l presents the corresponding
design parameters, while Fig. 6 illustrates the return loss as a
function of the frequency. The calculation clearly verifies the
validity of (31).

Our final example servesto illustrate the differences between
thetraditional quarter-wave design, and the extreme cases of the
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Return loss. dB

Frequency, GHz

Fig. 5. Case of afundamental and its first harmonic for variable impedance
transformratios K. f; = 10 GHz. f; = 20 GHz.

TABLE I
DESIGN PARAMETERS FOR STUDY RELATED TO PROPERTIES OF /'
AND ITSINVERSE 1/ K

Case# 1|Case#2|Case#3|Case#4|Case#5|Case#6
1 10 10 10 10 10 10
2 20 20 20 20 20 20
Z0 25| 100 200 12.5 1000 2.5
21 31.5 79.3 125 20 340 7.35
22 39.6 63.1 80 31.2 147 17
RL 50 50 50 50 50 50
K 112 2 4 114 20 1/20

il
S e

K=20 and K=1/20

K=4 and K=1/4

K=2 and K=1/2

-30

Return loss, dB

40

-50

5 7 8 1 13 15 17 13 21 23 25
Frequency. GHz

Fig.6. Return-lossstudy related to propertiesof I anditsinverse1/K. f; =
10 GHz, f. = 20 GHz.

Quarter Wavelength

Return loss, dB

\ \
=30 4

40 1

Single Pole

Double Pole

-50 T +— T T T T \
5 7 8 i 13 15 17 19 21 23 25
Frequency. GHz

Fig.7. Comparison of traditional quarter-wave design with exceptional single-
and double-pole (K = 4) cases.

present method, namely, the single and double poles. Here, the
single pole was approximated by using f> = 10,000 f;, and for
f1 = 15 GHz, the three sets of data are shown in Fig. 7.
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V. CONCLUSION

A novel and elementary two-section impedance transformer
has been shown to be capable of dual-band operation under un-
restricted load and frequency conditions. Exact closed-form de-
sign equations have been presented, and the results have been
validated numerically. The case of a fundamental and its first
harmonicisaspecial case of the solution that has been presented
herein.
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