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A Small Dual-Frequency Transformer
in Two Sections

Cesar Monzon, Senior Member, IEEE

Abstract—One of the most useful transmission-line constructs
is the quarter-wave transformer that is used to impedance match
a line at a single frequency 0. The feasibility of an electrically
small transformer with two sections and capable of achieving ideal
impedance matching at two arbitrary frequencies is demonstrated
analytically. To achieve this, the exact solution to the resulting tran-
scendental transmission-line equations for two sections is obtained
with no restrictions. The parameters of the transformer are pre-
sented in explicit closed form, and are exact. The results of this
study are useful for a number of practical design problems, in-
cluding dual-band antennas and RF circuits in general. In partic-
ular, feasibility of ideal operation at the important first harmonic
frequency 2 0 is demonstrated.

Index Terms—Dual frequency, impedance matching,
transformer, transmission lines.

I. INTRODUCTION

QUARTER-WAVE transformers are ubiquitous in engi-
neering and physics. Known also as quarter-wave plates
and quarter-wave sections, they are the most popular

kind of impedance transformers. Impedance transformers en-
compass lumped networks, tapered sections, shorting plungers,
and double-stub matching [1], as well as a lesser known class,
the so-called transmission-line transformer (TLT) composed
of transmission lines with twisted connections [2]. Impedance
transformers have traditionally been broadly divided into
two groups; those with a continuously tapered impedance
distribution and those with a stepped piece-wise impedance
distribution. The latter being considerably shorter than the
broad-band tapered transformers perhaps because they tend to
mimic a traditional lumped-element design.

In a very recent publication [3], a new line impedance
transformer has been presented. Chow and Wan introduce a
dual-band two-section 1/3-wavelength transformer length that
operates at the fundamental frequency and its first harmonic

. Such a novel transformer is of great interest because of the
current trend toward compact, smaller, and more efficient RF
front ends, and exploitation of frequency reuse in commercial
and military systems.

The transformer of Chow and Wan was designed by nu-
merical solution of the transcendental equations obtained by
enforcing operation at and (four equations in four
unknowns, line and impedance for each line section, all real
quantities). In addition, a design equation was presented
([3, eq. (2)]), which, although not analytically exact, was
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Fig. 1. Two-section dual-band transformer.

numerically nearly exact. It was further stated in [3] that the
analytical software Mathematica1 was used to prove that the
two-section transformer was not exact, but for engineering
applications “effectively exact” for impedance transform ratios

not sufficiently high ( up to 6 or 15 depending on the
tolerance on the resulting reflection coefficient levels). Chow
and Wan further rationalize that the inexact nature of the dual-
band two-section transformer was the reason why it was not
discovered before from an exact transmission-line analysis.

Here, we present an extension of the two-section transformer
analysis of [3] to any two arbitrary frequencies and ,
and obtain an exact analytical solution to the resulting tran-
scendental equations, leading to practical design equations,
which are validated numerically. Analytically and numerically,
we demonstrate that the two-section transformer provides a
true exact solution to the dual-frequency problem, under all
frequency and loading conditions. The present solution, when
applied to the case of fundamental plus first harmonic ( and

), results in an improvement on the analysis of [3], as
our solution is analytically and numerically demonstrated to be
valid under all impedance transform ratios.

II. ANALYSIS

The input impedance of the two-section line shown in
Fig. 1 is given by

(1)

(2)

We want the input impedance to be equal to at the two fre-
quencies of interest and . Equating to and solving
for from (1) leads to

(3)
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This is equivalent to looking toward the left-hand side from the
central transition plane. From (2) and (3), we eliminate leading
to the following two identities:

(4)

(5)

These have been obtained by separating the real and imaginary
components and assuming all parameters are real.

Equations (4) and (5) can be rewritten as follows:

(6)

(7)

which define the parameters and .
From (6) and (7), we obtain the following identities:

(8)

(9)

Equations (8) and (9), when applied to frequencies and ,
result in the following four transcendental equations:

(10a)

(10b)

(10c)

(10d)

From (10a) and (10b), we obtain

(11)

Whose solution is given by

(12)

for an arbitrary integer. Similarly, from (10c) and (10d), we
obtain

(13)

for another arbitrary integer.
Since we are interested in a small transformer, we should pick

the sign in (12) and (13), together with (here,
we assume ), and we obtain as solution to the above
transcendental equations as follows:

(14a)

(14b)

With the line lengths known, and can be determined through
application of (6) and (7) at either or . For instance, using

, and simplifying through the use of (14), we obtain

(15)

(16)

Using in (7) results in

(17)

which is essentially the so-called antimetry condition [8]. Equa-
tion (17) is valid provided . Similarly, after using
(17) in (6), it becomes

(18)

By using (17) in (18), a fourth-order equation for either or
results. It is, however, a simple algebraic equation of the

second order on the square of either or . Solving for by
standard means, the only solution leading to real line impedance
values is given by

(19)
and can be obtained from (17) as

(20)

This completes the derivation of the design equations for the
two-section transformer.

III. NATURE OF THE SOLUTION

The solution, as presented through (14), (19), and (20), is el-
ementary in nature, explicit, and in closed form; however, it is
instructive to consider a few fine points.

A. Total Length of Transformer

This can be obtained from (14). The total length in wave-
lengths (in the material) calculated at the fundamental frequency

is given by

(21)

In view of the fact that we assumed , it is seen that the
total length will, in general, be smaller than one-half wavelength
at the low-frequency end. This extreme is observed when

, i.e., when we have a double pole. Since the equations do
not smoothly consider this scenario, and some special limiting
action needs to be taken, this is done elsewhere in this paper.

On the other hand, the equations indicate that the total length
can be extremely small, and this can happen if , i.e.,
when a simple pole is encountered. This special case is treated
separately elsewhere.

B. Single-Pole Limit

For , the total length is exceedingly small, and (15)
becomes

(22)

Further, this implies that from (19) and (20)

(23)
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(24)

Since, on the other hand [5], the wave impedance and wave
velocity “ ” are related to the distributed (per unit length) in-
ductance and capacitance of a given line, we have

(25)

Since the velocity is the ratio from angular frequency to
wavenumber , we evaluate this at , replace in (25), and
solve (25) for and . We obtain

(26)

For exceedingly small lengths, (23) and (24) indicate that is
very large, while is very small. Equation (25) means that
is eminently inductive, while is eminently capacitive. It is
thus permissible to replace the first section with a series lumped
inductance equal to (here, in (26) is ), and the second
section with a shunt lumped capacitance given by (here,
in (26) is ). After some rearrangement, we find

(27a)

(27b)

The above combination of a lumped (series) inductance and
(shunt) capacitance is actually a known transforming network
using lumped reactive elements [6], and it is known as a
ladder-type half-section. This validates the extension of the
solution to the limiting case, and illustrates its roots.

Thus, the single-pole limit of our two-section transformer
is an extension of a lumped impedance-transforming network.
This is a fundamental difference between the present solution
and that afforded by a quarter-wave transformer.

C. Double-Pole Limit

Since according to (21), when , each section becomes
one-quarter wavelength, we are interested in elucidating the na-
ture of this special case. From (15), we see that and, in
this limit, (19) and (20) reduce to

(28a)

(28b)

These equations are, however, popular equations for the design
of two quarter-wave transformers in series [4], [7]. It is thus ob-
served that the limits of the present solution are well-known de-
signs of quite different nature, while the present design bridges
the gap between them, and extends them considerably, since the
limiting cases are single-frequency designs.

Fig. 2. Comparison of jS11j for typical quarter-wavelength versus two-pole
(K = 4) response.

D. Symmetry Properties

The dimensionless impedance transform ratio parameter
is defined as [3]

(29)

With this, (19) becomes

(30)

and it can be shown by purely algebraic manipulations using
(20) and (30) that the solution for is related to the solution
for via

(31a)

(31b)

IV. CALCULATIONS

A few calculations have been made via direct computation
of (14), (19), (20), and standard transmission line (1) and (2)
to define the return loss with respect to the line impedance

. The first example corresponds to a comparison of the per-
formances of a typical quarter-wavelength transformer versus
two-pole responses. One of the four two-pole cases considered
in the return-loss calculation of Fig. 2 is the double-pole case,
which was shown analytically to be identical to the standard two
quarter-wavelength section design. We have used a central fre-
quency of 15 GHz, , and . The
frequencies of the two-pole cases were selected around 15 GHz
to illustrate the broad-bandwidth characteristics of the design.
Table I shows the design parameters employed in this calcula-
tion.

Our next example illustrates the return loss as a function of
for fixed GHz. For in the range of 14–22 GHz,

and , the return loss is presented in Figs. 3 and 4, respec-
tively. The data shows that the design can behave like an accept-
able bandpass filter/transformer for reasonably low impedance
transform ratios , becoming marginal for for designs
that address the fundamental and first harmonic.
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TABLE I
DESIGN PARAMETERS FOR QUARTER-WAVELENGTH VERSUS TWO-POLE

STUDY. THE CENTER FREQUENCY WAS CHOSEN AT 15 GHz FOR Z = 200 

AND R = 50 
. HERE, L DENOTES THE TOTAL LENGTH

Fig. 3. Return-loss characteristics as a function of f for fixed f = 10 and
K = 2.

Fig. 4. Return-loss characteristics as a function of f for fixed f = 10 and
K = 6.

The next case corresponds to the fundamental and its first har-
monic. We chose GHz and GHz to illustrate
the fact that the present solution with two sections is exact. Re-
turn-loss data as a function of the frequency is presented in Fig. 5
for values of ranging from 2 to 20. The quality of the solution
is evident from this figure.

Another case we consider here is the validation of the proper-
ties (31) corresponding to and its inverse . The frequen-
cies chosen are GHz and GHz for ,

, and and their inverses. Table II presents the corresponding
design parameters, while Fig. 6 illustrates the return loss as a
function of the frequency. The calculation clearly verifies the
validity of (31).

Our final example serves to illustrate the differences between
the traditional quarter-wave design, and the extreme cases of the

Fig. 5. Case of a fundamental and its first harmonic for variable impedance
transform ratios K . f = 10 GHz. f = 20 GHz.

TABLE II
DESIGN PARAMETERS FOR STUDY RELATED TO PROPERTIES OF K

AND ITS INVERSE 1=K

Fig. 6. Return-loss study related to properties ofK and its inverse 1=K . f =
10 GHz, f = 20 GHz.

Fig. 7. Comparison of traditional quarter-wave design with exceptional single-
and double-pole (K = 4) cases.

present method, namely, the single and double poles. Here, the
single pole was approximated by using , and for

GHz, the three sets of data are shown in Fig. 7.
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V. CONCLUSION

A novel and elementary two-section impedance transformer
has been shown to be capable of dual-band operation under un-
restricted load and frequency conditions. Exact closed-form de-
sign equations have been presented, and the results have been
validated numerically. The case of a fundamental and its first
harmonic is a special case of the solution that has been presented
herein.
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